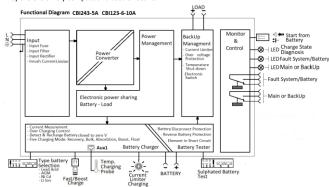

CBI1210A ALL In One

Input: Single-phase 115 – 277 Vac

(Battery Care)

Output Load: power supply 12 Vdc; 10 A
Output Battery: charging 12 Vdc; 10 A

Suited for the following battery types: Open Lead Acid, Sealed Lead Acid, lead Gel and Ni-Cd


Automatic diagnostic of battery status. Charging curve IUoU, constant voltage and constant current Battery Life Test function

Switching technology, output voltage 10-14.4Vdc Three charging levels: Boost, Float and Recovery

Protected against short circuit and inverted polarity
Signal output (contact free) for discharged or damaged battery
Signal output (contact free) for mains or Back-UP
Protection degree IP20 - DIN rail; Space saving

Technical features

Thanks to the All In One units (DC-UPS), it will be possible to optimize power management. The available power is automatically allocated between load and battery, supplying power to the load is the first priority of the unit thus it is not necessary to double the power, because also the power going to the battery will go to the load if the load so requires. The maximum available current on the load output is 2 times the value of the device rated current In. We call "Battery Care" the concept base on algorithms that implement rapid and automatic charging, battery charge optimization during time, flat batteries recovery and real time diagnostic during installation and operation. The Real Time Auto-diagnostic system, monitoring battery faults such as, battery Sulfated, elements in short circuit, accidental reverse polarity connection, disconnection of the battery, they can easily be detected and removed by help of Blink Code of Diagnosis Led; during the installation and after sell. The continuous monitoring of battery efficiency, reduces battery damage risk and allows a safe operation in permanent connection. Each device is suited for all battery types, by means of jumpers it is possible setting predefined curves for Open Lead Acid, Sealed Lead Acid, Gel, Ni-Cd (option). They are programmed for two charging levels, boost and charge, but they can be changed to single charging level by the user. A rugged casing with bracket for DIN rail mounting provides IP20 protection degree. They are extremely compact and cost-effective.

Norms and Certifications

In Conformity to: 6 Lus EN60950 / UL60950-1 and CSA C22.2 No. 60950-1-07 (Information Technology Equipment) – Safety – Part1: General Requirement. Electrical safety; EN54-4 Fire Detection and fire alarm systems; 89/336/EEC EMC Directive; 2014/35/UE (Low Voltage); Safety EN IEC 62368-1: 2014/AC:2015; DIN41773 (Charging cycle); Emission: IEC 61000-6-3; Immunity: IEC 61000-6-2. CE.

Climatic Data

Ambient temperature (operation)	-25 ÷ +70°C
De Rating Ta > 50°C	- 2.5%(In) / °C
Ambient temperature Storage	-40 ÷ +85°C
Humidity at 25 °C no condensation	95% to 25°C
Altitude: 0 to 2 000m - 0 to 6 560ft	No restrictions
Altitude: 2 000 to 6 000m - 6 560 to 20 000ft	De-rating 5°C/1000m
Cooling	Auto convention
General Data	
Insulation voltage (IN/OUT)	3000 Vac
Insulation voltage (Input / Earth, PE)	2000 Vac
Insulation voltage (Out Load & Battery / Earth, PE)	500 Vac
Insulation voltage (Out Load & Battery / Fault System &	500 Vac
Main or Back Up terminal)	
Protection Class (EN/IEC 60529)	IP20
Reliability: MTBF IEC 61709	> 300.000 h
Pollution Degree Environment	2
Connection Terminal Blocks screw Type	2,5mm(24-14AWG)
Protection class (PE Connected)	I, with PE
Dimensions (w-h-d)	65x115x135 mm
Weight	0.6 kg approx.
Input Data	
Nominal Input Voltage Vac	115 – 230– 277
Voltage range Vac	90 ÷ 305
Inrush Current (Vn – In nom. Load) I ² t	≤11 A ≤5 msec.

47 ÷ 63 Hz	
2.8 - 1.38 A	
4 A	
10 A	
12 Vdc / 10A	
10 A	
≥ 90 %	
17	
Yes	
Yes	
Yes (typ. 35 Vdc))
14 4 Vdc	
	.3:
Yes	
Yes	
10 - 14 4 V (17 N	i-C4)
	· cuj
Push Button	
∞: standard	
5 min.: Require S	SW
9 – 10 Vdc batt	
10 – 11 Vdc batt	
Yes	
	AC1: 6
e load)	
	NO
C NC	NO
	NO
C NC	
C NC	
	2.8 − 1.38 A 4 A 10 A 12 Vdc / 10A 10 A ≥ 90 % ≤ 60 mV _{pp} 1 sec. (max) Yes, Unlimited 17 Yes Yes (typ. 35 Vdc) Yes 14.4 Vdc 15 h 1 min. 27.5 Vdc 2.23;2,25;2,27;2 NiCd:1,1; Li-ion: 2 − 9 Vdc 10 A ± 5% 20 ÷ 100 % / I _{bat} Yes Yes by Jumper Yes Yes by Jumper Yes Yes 100 mA 4 stage Boost / Float 10 - 14.4 V (17 N 1.1 x I _n A ± 5% 10 A 20 A 30 A max. 20 A max. RTCONN (cable) Push Button ∞: standard 5 min.: Require: 9 − 10 Vdc batt

